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ABSTRACT )50

The powers r" of the distance between two points specified by
spherical polar coordinates relating to two different origins, or of
the modulus of the sum of three vectors, are expanded in spherical
harmonics of the angles. The radial factors satisfy simple partial
differential equations, and can be expressed in terms of Appell functions
F4 and Wigner or Gaunt's coefficients. In the overlap region first
discussed by Buehler and Hirschfelder the expressions are valid for
integer values of n > -1 , but in the other regions for arbitrary n.
For high orders of the harmonics individually large terms in the overlap
region may have small resulting sums; as a consequence the two-center
expansion is of limited uséfulness for the evaluation of molecular
integrals.

Expansions are also derived for the 3-dimensional delta function
within the overlap region, and for arbitrary functions f£(r) , valid

outside that region. L R Aot
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THE TWO-CENTER EXPANSION FOR THE POWERS OF THE

DISTANCE BETWEEN TWO POINTS

1. Introduction

The inverse distance between two points Q1 and Q2 specified
by the polar coordinates (rl, ‘91,? 1) and (r2, 92, 502) with respect
to a common origin O 1is given by the well-known Laplace expansion in

r, /n>
direction cosine (cos 912) . For powers other than the inverse first

powers of and in terms of Legendre polynomials of the mutual

analogous expansions exist either in powers of T, /n>

in the former case the angular dependence is given by Gegenbauer poly-

or in Pe (cos 912)

1 . .
nomials of (cos 912) ; in the latter case the writer has shown in two
recent papersthat the radial dependence can be expressed by means of

Gauss'hypergeometric function2

" “’/g;x;z) z(a)w(/bw .

— ¥ . (1a)
(X ), W e ;
(@), = (a5

o (0 +1) -+ (atw-1) = [ (atw)/ TCa) . (1b)

In many physical problems it is more convenient to express the
positions of Q1 and Q2 in spherical polars about two different
origins Ol and 02 in such a way that the polar axes and the planes
defining q? = 0 are kept parallel. If the coordinates of 02 with
respect to 01 are given by (r3 = a,'93) 3) , expansions for the

inverse distance in terms of spherical harmonics of the angles have

1 L. Gegenbauer, Wiener Sitzungsberichte, 70, 6, 434 (1874), 75, 891
(1877).

R. A. Sack, University of Wisconsin, TCI Reports, Nos. 20 and 24,
referred to as I and II respectively.




been given by Carlson and Rushbrooke, by Rose and by Buehler and
Hirschfelder3-6. The precise form of the expressions depends on the
specific definition of the spherical harmonics; in the present context

the most useful are the unnormalized forms

®lm( 9, 7’) = eimrl’elm| (cos9) s -ﬂlm( 9,?) = eimf le(cos9')

(2a)
and the normalized form.
Y[“‘( 2. ¢ - L—(z(+1) o -m) ! /4 (Pm) .':{ % inf le(COSO) _ (2b)
Buehler and I-Iirschfelder5 consider in detail the case 9 =0

3
and put

lQlel-l = ZB(/’KZ’Im];rl’rZ’a) @/'-m( 91; 71) ('D(Lm( 9;f2)

-

ll ('—'0,1,"' ;s -4

1’2 < <

(3)
_<_m§/ ; /<=min(/1,/2)] .

They have shown that the form of the radial functions B differs
according to the relative values of T, T, and I, =a; there are,
in fact, four distinct regions defined by the following inequalities

(see figure la):

B. C. Carlson and G. S. Rushbrooke, Proc. Cambridge Phil. Soc., 46,
215 (1950).

M. E. Rose, J. Maths. and Physics, 37, 215 (1958).

3 a. R. J. Buehler and J. O. Hirschfelder, Phys. Rev., 83, 628 (1951);
b. ibid. 85, 149 (1952).

6 J. 0. Hirschfelder, C. F. Curtiss and R, B. Bird, Molecular Theory
of Gases and Liquids (J. Wiley and Sons, New York, 1954).




So:lrl-r2| Srysrytr, S5y 21, v 1,y
%)
SZ:r2 > I, + ry 5 S3:r3 > r, + T,

The same arguments apply to the more general expansions for arbitrary

values of the angle 93 and of the power n of r .

. - 3 m
n 3
r = Z I_ZR(n; /i) (2: é:m13m2:m3;r1:r2:r3) .I;I- ‘21 ( 9‘53 fs) H
4

4,m
~ (5)
if either of the definition (2a) or (2c) is used for the spherical

harmonics, the corresponding radial functions differ from those in (5)

by constants only; the subscripts C) or Y will be added to R in

2
such cases.
For the inverse first power, n = -1 , the functions 2R = 2Ri
vanish in each of the "outer™ regions Si (i =1,2,3) wunless
(i = {-&4 H ZS?_O (zs=1,2,3), (6a)
and
motmo+mo= 0, |n] <l (s = 1,2,3) 5  (6b)

throughout this paper (i,j,k) denote permutations of (1,2,3) .
If (6) is satisfied, 2Ri consists of a single term

L ¢ l-+1
= . R ¢
Ry = ZKi(-l’,i’lj’lk’mi’mj’mk)rjlrk /:i (0

where the coefficients 2Ki can be expressed in terms of Wigner

coefficients3’4 or as ratios of factorialss’

For the overlap region SO ; Buehler and Hirschfelders’6 found
an expression for Bo as a double power series in rlla and r2/a
for which they tabulated the coefficients as ratios of integers for

0<m< {1 < [2 < 3 . They could not derive a generally valid formula



. . . . 5b
in this region, though in their later paper they gave a (rather
cumbersome) generating function for the function Bo .

The aim of the present paper is to derive generally valid expres-

sions for B or in all the regions; but for the sake of greater

2 i
symmetry the vector I = (r, 9 ?) in (5) will be understood to mean,

not the vector Q1Q2 , 1i.e. ~2 Iy = Iy, but the vector sum
A

r, +r R differ only by

the factor (-)! . As in I and II, the functions are derived as

; the corresponding radial functions

solutions of sets of partial differential equations; they can be ex-

pressed in terms of the Appell functions F4 . which form a generaliza-

tion to two variables of the hypergeometric function (1):

) (o) +,€/3) u v
Fa(“:/;(f’j;fff) - Z (3”2(}% mi ®

summed over all non-negative values of u and v . The theory of

these functions is given in detail in the monographs by Appell and
Kampé'de Fé}iet7’8; most of the relevant formulas are to be found in
Chapter 5 of the Bateman Manuscript Projectg, but for the benefit of

the reader, all the formulas utilized in the present paper will be
collected in the Appendix. The differential equation do not involve

the azimuthal quantum numbers m , and hence the nature of the functions
2R does not depend on these numbers; they can only affect the leading
coefficients. In the outer regions these constants can be determined
from the results of I and II, and in the inner region So indirectly,
by means of certain linear relations between Appell functions along
critical lines. They can be expressed, as in IL by means of 3j-symbols,
Wigner coefficients, or integrals of triple products of spherical

harmonics (Gaunt's coefficients)lo-ll,

P. Appell, Sur les fonctlons hypergeometrlques de plusieurs variables,
Mémorial des Sciences Mathemathues, Fasc. III (Gauthier-Villars,
Paris, 1925).

F. Appell and J. Kampe de Fériet, Fonctions hypergeometrlques et
hypersphériques, Polyndmes d' Hermlte (Gauthier-Villars, Paris, 1926).

Bateman Manuscript Project, A. Erdelyi ed., Higher Transcendental
Functions, = (McGraw . Hill, . New. York, 1953) ; referenced directly
by the prefix B.

10 See refs. 3-5 and 10 of I1I.

11 J. A. Gaunt, Phil. Trans. Roy. Soc. A. 228. 157 (1929).




It is found that for n = -1 the functions 2R = 2Ro appear

in the region So with non-zero coefficients whenever
|/1-€|5[3_<_/1+Z2 5 [1+_/2+€3 = even (9)

so that by confining attention to this case it would not be possible

to determine the leading coefficients in this region, unless at least
one of the equations (6a) is satisfied. 1In ;;nsequence the general
case (5) is considered from the start; the resulting formulas are valid
for arbitrary values of n in the outer regions, but in So only for
integer n > -1 . The formulas obtained for S1 > 8, and S, can be
put dnto an operational form which permit generally valid expansions to
be derived in these regions for any function of r ; this will be done
in section 4. TWithin .So , on E?e other hand, the Laplacean operator
applied to the expansion for r does not vanish; this gives an
analogous expansion for the 3-dimensional Dirac delta function and its

derivatives.

2. Mathematical Derivation

The functions r" satigsfy the differential equation

v, 2™ = 2@ = vlE™ = aGe? (10)
which when substituted into (5) yields
2 P L+
0 2.0 Tss R(n,(,m) = invariant (s = 1,2,3)
or 2 Ts ars r 2 hiiad
s s (11a)
= n(n+l) 2R(n-2,(,51) . | (11b)

Furthermore all the 2R are homogeneous functions of the variables
L of degree n , and in the region Si - they are regular as rj

and T, tend to zero; hence they must be of the form



(; -4
Ry = T (‘ "R Gi(n,~/,t£;rj/ri,r /ri) (12)
where
Y G ol eyt
6, bm = ) o, bm iy . (13)
Substitution of (11) into (12) and (13) leads to the recurrence rela-
tions
(/A,+2)(2(j+/w+3)(}‘+2,),(n) = (v+z)(z?k+;1+3)c/m,+z(n) (14a)
AN A A ARV (146)
= n(n+1)€ky (n-2) . (l4c)

This defines Gi as an Appell function F4 in the variables

g = rj /ri s ’7= T, /ri : « (15)

Gi(n,'{,}ll) = Ki(n’!’,‘,“)Fa('{ ~%n, Ri-%-%n; /J + %’/k + %; £, 7) (16)
where we abbreviate
A= slrtely , A, = A-4, =123 . an

In view of (1la) and (12), it is easily shown that the function
Gi satisfies the set of differential equations of Appell's function
(A2) with the variables and parameters defined in (15)-(17). Hence,
according to (A3), the complete set of solutions satisfying the

differential equations for R(n,( m) becomes




7
‘-[f‘l -! ’l
r,"x,/xy) SRR NC e %:'21'1'%“;}5'/3"%"‘ P& 7

(18a)

<t
Sl
n

- 4 4

Y5 = rin(rj/ri)J (r, /r)) ¢ F, (A-3n, Zi-%n-%;% +/j,% +4; &, 7, (18h)
- .- 4, ‘

Tij = rin(rj/ri) “ (rk/ri) F,( lj-%n-%,-ik'l'%n;%'[j;% +<(; E,?) s

(18¢)

I{ -4
= r].rn(rj/r]._)j (rk/ri) . F4(2k-3§n'3§,- Rj'l-%n;% +/;,']§'[;; 5,7)

(184d)

s
b
!

Here the first subscript in notation Qit indicates which radius r,
occurs in the denominator of the definitions (15) for § and 7 5
and the second subscript shows that ‘_'P]._t/r]._n becomes singular as

L ~»0 ; if t =0 this ratio becomes singular whichever radius
tends to zero. Further we denote the function 2R in the region SW
by 2RW as in (12), and Kwit the coefficients of (18) in the

expression for 2RW T

znw(“’{’,‘l‘) = Z Kwic(“’!;i‘) ?u(“’!) . (19)

t

In view of (Al) the Appell functions in the outer regions are convergent
only if i =w , and the regularity of 2Ri for small values of rJ.

and r

K requires that the solution is of the form (12),

K.ip =0, ¢t # i ; K,,. = K, . (20)
In the region S0 the series are always divergent unless they terminate; -
in those cases in which (‘18) leads to useful expansions the choice of
i 1is somewhat arbitrary. The nature of the functions ‘f of (19)
being known from (18), it remains to calculate the coefficients Ki

and Koit .



To determine Ki in Si we provisionally combine 1:j + re to
~ -~
a vector (rjk’ Bjk’ ?jk) ; then according to (19) of I and the additiom

theorem for the P (cos 912) (B 3.11.2) we have

- e £ 4 - ‘

n n m m

- > o e 0T 0,7 g0 01V, g x
»m :

A (21)
(-&m), 3 r'kz '
X 5 F([-%n,-%-%n;— +{; -1
(35)! 2 L2
i

This expression involves rjk only through the solid harmonics

rjke "Q'tm and through positive even powers rjk2v’ ; both factors are
regular functions of rj and r, - If these products, in turn, are

expanded in spherical harmonics of ( 9j’ fj) and (p'k, ;Ok) , we see
from (5) and (32)-(34) of II that the lowest power 2y which contributes
to terms for which [j + (k -4 =2\ occurs for ¥=Q , lrrespective
of n . We have from (5) and (30) of II: ‘

l+2 2 m _ m ,J ,k.‘ i Hx

Gss /j+q<+1) 1! £/ [kx | (22)

I + e s e
(']E,l;)(%,(k) alm -mj -m

where I_O. is Gaunt's coefficient:11

AN L i1 ' "
1 = j P,"()P,) (X)P 1 (x)dx . (23)
Q V4

m m' m" 1 ell

1f we put /= (i , m=-m,, l = Ri and use the abbreviations (17))
the constant Ki(n, ,m) 1in (16) is found from (21)-(23) and (1)

) {, (/i+%)(-%n;/1)(-%-%n;3i) /i 45 e
N I O A T AICTIA AR
~ ’j >k Q i j mk

(24)

The radial functions 2Ri in the outer regions are thus completely

determined by (12), (16) and (24). The corresponding expressions in




the overlap region So can be obtained by means of the linear relation
(A8) between the four solutions (A3) of the differential equations (A2)
on the critical lines (A4) (see figure 1). These lines correspond
exactly to the boundaries Li separating the regiéns Si from So s
but the 2Rw must be brought to a common set of variables before (A8)
can be applied. In (18) we can transform q’.. , on which 2Rj solely
depends, into a linear combination of q’ii and QPij by means of

(A6), but the resulting series are in general divergent. The only cases

in which (A6) leads to an expression which can be usefully interpreted
without recourse to contour integration, are those in which the initial
series terminates, i.e. where & or /Zg is a non-positive integer; then
(A6) shows that one of the series in the new variables has zero coefficient
and the other terminates. Applying this argument to the set (18) we

find we can deal with two cases:

(A) n 1is a non-negative even integer; then tis analytic
throughout and can be represented by a finite expansion common to all
regions; the value of i in (18) and (19) is immaterial, and the result
can be expressed in a form involving only positive powers‘of the L

(B) n is an odd integer > -1 ; then

2, TG+ Ta b

- i = (-yzHin- ,.
Vi =ty 5 T = O A %0 rrmray = )
Now since 2R = R on L (s =1,2,3) , the coefficients K _, in
o 27s ] oit
(19) can be determined from (24) and (A8) leading to
Kogg = %Ky Kopy = 3K, = 3KJT. 0 Ko = ¥y = 8 J/T, (26)
FG+0) T +f) Msm-A) TS #m-2)
K = ag! 2 i 2 "k 2 i (27a)

oo T Tl Ta-6) Tanm L) TG +neh)

.+
ORI

AN L [l b )
(1+%n;2i+1)(-g-+§;A+1) Q™



10
The expression (27a) is meaningless (0.00) if ﬁ1 > %4+%n ; nevertheless
(27b) is valid for all values of g and m satisfying (6b) and (9);
the result could first be derived for n raised by a sufficiently large
even number for this difficulty to disappear and then be extended by

repeated application of (11b).

3. Discussion of Results

As in II, it is convenient to factorize the expression for the

functions 2R in (5) in the form
2R(n,"{,?;rl,rz,r3) = 21('(’,51) 2R'(n,!;r1,r2,r3) (28)

where the constant 2K' is independent of n and the values of r

and comprises the complete dependence on m . The selection preferred

by the writer is

/4, ¢
K (hm = (L i (B 1 ( PoE ) (29
~ a

B B
where the I , are Gaunt's coefficients11 defined in (23), or if the

un-normalized 3j-symbols defined in (26) and (29) of I1I and the abbrevia-

tions (17) are used

/2

-mz ~m

' A A ! 3 (/;-m ): (1
oK (!:5) = 2(-)". CA+D? T —A—s-f’— (/S-h%) Y -m,

s=1

(30)
The second factor 2R' in (28) differs according to the region Sw 4
ih the"outer™ regions Si we obtain from (12), (16), (17) and (24)

-
b G h)CEms A fx b e
L] . = - v - k "
Ry birpe im0 = G 0D &0 (ri ) (ri) E

(31
fL3 3.2, 2 _ 2, 2
FA(A'%H; 21'%'%113{34' 2° {"' Z’rj /ri ,rk /l’.’i ) .

In the overlap region So » the expressions for 2R’ are valid, accord-

ing to the discussion of the previous chapter, only if n is an integer
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The main application of the expressions derived in this paper is
likely to be the evaluation of integrals for the interaction between
two "cherge"dietributione referred to different origins and interacting
with a negative power of the distance

ﬂ G ACHIL N &g &, (35)

1f the functions g are expanded in spherical harmonics

}:ll AL _{1(9,7“ y uwi,R (29)

the expansion for '|Q1Q2| is given by (5) and (28)-(34), except for

a factor (=)' 1in each term as discussed in the introduction and by

Carlson and luehbtobkea. The orthogonality of the functions

leads to straightforward integrations over the angles for common values

of 1°% s ’2 s My , and the results have to be summed over all

compatible values of l 3 The spherical harmonics of 9 and Y3

are best left unnomli.:ed even if the expansion (36) is given in

normalized harmonics; in perticuler for the case considered by Buehler

and lutechfelders, 93 =0, w have Ll =1 (my = 0, fl =0 (m, $0).
For n = -1 the results in the outer regione have been known

from previous uork3 -6,

for other negative integer values of n and
93 = 0 an expansion has been derived by Prigoginelz by means of the
appropriate Gegenbauer polynouule:l, which were then re-expanded in
terms of spherical harmonics; the resulting expressions are valid in
the region 83 only, though this limitation has not been noticed by
Prigogine. The complete analysis of the expansions for general values
of n and DS = 0 , which implies a summation over t’ 3 in (5), leads
to expressions for the radial factors which involve more complicated
functiene than the Appell polynomials used in the present paper, and
for this reason will not be discussed here. :

T8 e pertant SA08 CONEL0NTeS 10 & = =) ? gor Which w8
obtain for 2!' in (31) and (33)

12

I. Prigogine, The Molecular ‘rheory of Solutions (North-nollend
Publishing Co., A-eterdu, 1957).
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v {4
". 4(2/1-1).. i'll rk‘

.= (- T e [ (S\ | (37)
2% (2tj+1)..(2(k+1).., r"i(”f“ [a.,sz“

in agreement with previous work3'6§ and for the overlap region S0

L o2f -1l -1y bu
N ' ' ' 3 1 2 a a -1
R' = 3CR' + R+ .RD - (=) —-) 2\ .
2o 21722 (2134-1).'.'2‘ (A+1)! (ﬁ (rz)

(38)
X Fa(-l-A sk 23;35-[1,35-(Z;rlzlaz,r-zzlaz)

where (20)!! = 2 k!, (2k-1)!! = 25 (B), (cf. (43) of I); the function
F4 in (38) represents a polynomial of degree A + 1 in g and 'z s

or 2(A+1) in (rlla) and (rzla) . By substituting (29), (30) and
(38) into (5) with the special value ‘93 =0 , using the harmonics @
of (2) instead of  , and summing over [3 the writer has been able
to reproduce and extend the list of coefficients tabulated by Buehler

and Hirschfelder5’6.

The lack of an expansion for n < -1 wvalid within So is a
serious limitation to the applicability of the method to molecular
problems; it precludes its use for the evaluation of relativistic
corrections to Coulomb energies, for which n = -2 , or of van der Waals
energies (n = ~6) for interpenetrating or even closely approaching
elongated distributions. The existence of expansions valid in S° for
fractional n appears doubtful because of the highly complicated
branch points of the function 2R; corresponding to the physical
singularity at r = 0 . On the other hand if the relation

el = -ax S3(r), | (39)

where ¢s3 is the three-dimensional Dirac delta function, is applied
to (37) and (38), an expansion for 5‘3 is obtained, analogous.to (5)
and (28)-(33) with



SRi J,{) 0o, i=1,2,3 (40a)

[3‘“ ?
- 20 -1l -n! H lxl
e )5 el-nnel-n ( o

2 E) T

X F4(-A,’5-/13;—‘5-[,%-Q;rlzlaz,rzzlaz) .

1(2 A,-1) 112 A-2 s
(40b)

In contrast ot (31) and (33), the functions 2R'(J') are discontinuous
along the boundaries Ls } hence, although the Laplacean operator could,
in turn, be applied to {3 , any integral making use of such an
expansion for VZ(S3) would have to be supplemented by line integrals

taken along the L, , and correspondingly for higher derivatives.

Even in such iases, where the complete expansion is known in So s
its use for the numerical evaluation of integrals may give rise to
considerable difficulties. The joint degree in r, and T, of the
terms in 2R;

w=-2-/1-/2+/a+v 1)

may be positive as well as negative; on the other hand for large
values of (r1+r2) the functions cannot increase faster than with
this sum raised to the n-th power. Hence for n = -1 all those
terms in a given 2R; with a constant value of w > 0 must contain
the factor (rl-'rz)w"'1 , which in view of (4) remains bounded. 1If,
therefore, an attempt is made to evaluate the integrals in (35) and
(36) term' by term over the expansions for 1/r in (12) and (13),
we obtain repeated integrals of the form

l+lHl-p-y -4+
a' /. C/uV frl #Wl([l’ml;rl)drl X

! A 42)
x | T2 Wy ({y,mys15)dr,
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with limits corresponding to the boundaries of S° . These terms are
likely to be largest for large /b and Y , but will add up to a small
sum when summed.over constant values of w , thereby reducing the accuracy
of any numerical method employed. To avoid this difficulty we could
first calculate 2Rg(-l,f) over a grid in S0 and evaluate the integrals
by a suitable two-dimensional quadrature formula. This is bound to be
more cumbersome than the repeated integration in (42) and also
necessitates knowledge of recurrence formulas by which Ro can be
computed for large i from values with small f without loss of
accuracy; the writer has been unable to derive such recurrence formulas,
not only those involving 3 functions as suggested by Appe117’8; but even
numerically useful formulas involving 4 or more terms.

The usefulness of the two-center expansion for molecular integrals
would thus appear limited to the following special cases:

(a) The expansion for ( 1 and ? 9 only extend to small
values of l’, i.e. the change distributions are atomic (Coulomb integrals).
For this case other methods are available, but the present approach
seems to be competitive in simplicity and efficiency.

(b) Compared with the distance ry=a, fl and (2 are
sufficiently concentrated so that the integrand becomes negligible
outside the region S3 . In this case the two-centre expansion is the
most convenient method for the evaluation of the integrals; its usefulness
could be increased considerably by numerical methods for the approximate
evaluation of small, but not negligible contributions from the region
So .

(c) The functions fl and fz are of such a nature that the
integrals over S0 of their products with the 2R; can be evaluated
analytically; this approach again necessitates the extablishment of
recurrence relations)in this case for the integrals. For exponential
functions ? this method willlge treated in a separate paper.

In a recent paper Fontana ~ has sketched a two-center expansion
analogoua to (27a) of I, which is independent of the region Si , but

13 P. R. Fontana, J. Mathematical Physics, 2, 825 (1961).



16
introduces powers of (r12+r22+r32) in the denominator. The explicit
formulas are not given by Fontana, and for the reasons discussed at the
end of Section 3 of II the writer considers that the expansion will
involve functions of greater complexity than those considered in the
present series of papers.

‘More - recently, Chiu14 has derived some of the results of this
paper by means of irreducible tensor algebra. Chiu also considers cases
for which the functions depend on the angles of ,f2 + 53 -n provided
93 = 0 ; a complete analysis of such cases would require the use of

6j-symbols and has been purposely postponed by the writer.

4. An Expansion Theorem for Arbitrary Functions f£(r)

As in I and II, the formula (31) for the functions ZR; in the
outer regions, though not (33) for 2R; , can be put in an operational
form. For the factor in the general term of (31) and (8) which depends
on 1n We obtain

ﬂl—,-‘( —.Zu—Iv
(-%n; A+u+v)(-%-35n; 2i+u-l~v)ri ik =

/ (43)
i . 2
(‘ri) _1__ —a__ {y _]_-__ a A""I«.*’zv o+l
) Gall #usdo (. Or, ) r. | or. Ty .
i i i i

Hence if we expand any function £(r) which can be represented as a

power series in 4  we obtain in S; in analogy to (5), (28) and (29)

)
/ et
(= ) [ X - TT , (P 90 (46)
where / Cale £ 42y
4G r, tr,d r, *
f'(('r ) = i_J k X<
251N, 7's ('2‘u).'.'(2v).'.'(2(.+2u+1).'.'(2(k+2v+1).'.' '
u,v . 45)
/. 040 -4 +3uetv (
fra\tL [\ .
BETRT s | 971 Zri ) )
1% )

Y. N. Chiu, To be published.




or using modified spherical Bessel functions i?(x)

b1 3 e‘.' . i'j(rja/ari) ien(rkB/Bri)
sz = 4y, v [ = 8—) o 7 F.»f(r.)] .
* LT O i /o) ot

(46)

As in I and II, this expression factorizes if f(r) is a spherical

Bessel function

B = w &) , w=i,ye0a® 47)
then in view of (56)-(60) of 1~
, A
T Oy ey @) k) 48)
[

and for the modified Bessel function £(r) = io(Kr)

3
?
£, = [ i, (Kr)) , (49a)
271 s=1. (4 s
and for the modified Bessel function of the second kind f(r) = ko(Kf)

' ¢ ;

o = () i, (Krj) i, (Rr,) k,y (Kr)) . (49b)
3 k ¢

For jo and io » Which are even functions of the argument, the expan-

sion is invariant on permuting (i,j,k) and is therefore also valid

in So ; for the other Bessel functions, the writer has been unablé

to find the expression appropriate to So .
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Appendix: Properties of the Appell Functions F4 .

Appell's function F4 as defined in (8) represents a polynomial
in & and '»L of degree |x| or |/6| if @« or % is a non-
positive integer. In all other case F4 is an infinite series which

converges for values § and 7 such that

|§|%+|zl%<1 ; (A1)

for other values of the variables the function can be defined in terms
of contour integrals (cf. (B 5.7.44) and (B 5.8.9,13)). They satisfy
the pair of differential equations (B 5.9.12)

§2-5—2£-+2£ 2z —-—+(ac+ +1)(§ .Z)+u, z =
282 "°1 989 7 7 55 7 7
(A2)
3%z 132
= == 4 +
;agz 787 (YB'Z
This set has, in general, four linearly independent solutions
(p 52 of 0,
]
z = ;'X,Zl'({ Fh(a+2-g-d',/$+2-x-6’;2-1,2-("’;{,7) ,
Zi = Fh(a;/g§J:J’;.§:7) s
(A3)

N
]

; gl-x Fa‘““'X’ﬁ“’(f ;Z'X ,J’; f,z) ,
z, = %1'J,F4(u+1-(y',ﬁl-1-({';J’ﬂ-d’;,j,?) 5

but the four independent solutions of systems such as (A3) become

linearly dependent with constant coefficients on certain critical

lines ( 12 of 8). For any function F4 there exist at least three
* , 15

critical lines

15 P. Appell, J. des Math. Pures et Appl. , 3rd series, 10, 407 (1884).




/§+/~l = 1 5 L /§-/1l =1 ; L '/'l-/fz 1
(A4)

which form sections of a single parabola

§2-257+12-2§-22+1=0 (A5)

For variations of E and 11 along L , Appell has shown that

=2 [f,'z(f)] taken as a functlon of E satisfies a th1rd brder
ordinary differential equation, instead of a fourth-order one As along
an arbitrary line; hence (A2) has only three linearly independent
solutions on L, . For the other lines, this dependence follows from

i
the transformation (B 6.11.9)

F4<u,/5;1,d’;§,7> -

r ! r A_x - / -
T %j’z.c)(f(/;; -7’ “FA‘“""“'J;X’“J’I'/!;;’ '%‘) D)

LIS SRITEYS

r(xl /3) (o) (- 7)-/3 F4(/,/+1-J,; d',ﬁﬂ-u H ;lg’ -;—)

and a corresponding transformation to (1/ f} 7/ & . Appell has not

explieitly stated the coefficients relating the functions (A3); the
writer has been able to deduce them for restricted values of the param-
eters only. Considering their behaviour near (1,0) and (0,1), we see
that two of the functions are singular in the vanishing variable and
two analyt;ic (for fractional values of X and X') ; regarded as func-
tions of the other variable they are essentially hypergeometric series
and since (B 2.1.14)

(o fs D) = F(J)ﬁ(y-«ﬁ)[ﬁ*([-x)f'(l-/ﬁ)] o (A7)

Re(X) > Re(u+/$) s
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the only reldtion with constant coefficients which can hold on the

line Ls of (4) is

T Tah 2+ ¢ L@DTE,
r(x+x'-“-1) F(X +J'-/5_1) o si F(l-x) T(1-B) "1 "
| | (a8)
e _fafrexh , ., Tepplgh , .
53 TOp-a) T(p-A) 7 Cok TGO T (A
where
E, =1 3 &, = 1, st | . (a9)

The precise form of (A8) for the lines Lj and Lk follows from that
for Li and (A6). On the other hand, a more careful investigation of
the behaviour of F(a.,/S;X ;3Xx) near x =1 (B 2.10.1) shows that
(A8) is correct only if all the series terminate which appear with non-
vanishing coefficients; otherwise terms of the form '(l-g)i-aL -/3
enter into (A8) which do not add up to zero. .

Appell has also stated (p. 19 of 8)‘that any three contiguous
functions F4 satisfy a linear recurrence relation, a total of 28
equations if only one parameter at a time changes by unity; but the
writer has been unable to find the complete set of such relations in
the literature or to derive it, and he doubts the validity of Appell's
statement16. '

16 Prof. Erdéiyi (private communication) has concurred with this

opinion.
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Figure 1 The four regions Sw and their boundaries

I

as functions of r and Ty

as functions of E' and '7 .
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Figure la
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Figure 1b




